Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

DISI Spray Modeling Using Local Mesh Refinement

2008-04-14
2008-01-0967
The accurate prediction of fuel sprays is critical to engine combustion and emissions simulations. A fine computational mesh is often required to better resolve fuel spray dynamics and vaporization. However, computations with a fine mesh require extensive computer time. This study developed a methodology that uses a locally refined mesh in the spray region. Such adaptive mesh refinement will enable greater resolution of the liquid-gas interaction while incurring only a small increase in the total number of computational cells. The present study uses an h-refinement adaptive method. A face-based approach is used for the inter-level boundary conditions. The prolongation and restriction procedure preserves conservation of properties in performing grid refinement/coarsening. The refinement criterion is based on the mass of spray liquid and fuel vapor in each cell. The efficiency and accuracy of the present adaptive mesh refinement scheme is demonstrated.
Technical Paper

Impact of New Evaporative Emission Requirements (Euro III/IV) on Gasoline Fuel Systems

2007-11-28
2007-01-2661
This paper describes the impact of the new evaporative emissions requirements (Euro III/IV) on automotive fuel systems. Fuel system components like carbon canister, fuel tank, filler pipes, fuel lines, vapor management system were reviewed to assure that the design of each component will achieve the new requirements.
Technical Paper

The Effect of Dimethoxy Methane Additive on Diesel Vehicle Particulate Emissions

1998-10-19
982572
FTP emissions tests on a passenger vehicle equipped with a 1.8 L IDI turbo-charged diesel engine show that the mass emissions of particles decrease by (36±8)% when 16.6% dimethoxymethane (DMM) by volume is added to a diesel fuel. Particle size measurements reveal log-normal accumulation mode distributions with number weighted geometric mean diameters in the 80 - 100 nm range. The number density is comparable for both base fuel and the DMM/diesel blend; however, the distributions shift to smaller particle diameter for the blend. This shift to smaller size is consistent with the observed reduction in particulate mass. No change is observed in NOx emissions. Formaldehyde emissions increase by (50±25)%, while emissions of other hydrocarbons are unchanged to within the estimated experimental error.
Technical Paper

Comparison of Analytically and Experimentally Obtained Residual Fractions and NOX Emissions in Spark-Ignited Engines

1998-10-19
982562
Using a fast-sampling valve, residual-fraction levels were determined in a 2.0L spark-ignited production engine, over varying engine operating conditions. Individual samples for each operating condition were analyzed by gas-chromatography which allowed for the determination of in-cylinder CO and CO2 levels. Through a comparison of in-cylinder measurement and exhaust data measurements, residual molar fraction (RMF) levels were determined and compared to analytical results. Analytical calculations were performed using the General Engine SIMulation (GESIM) which is a steady state quasi-dimensional engine combustion cycle simulation. Analytical RMF levels, for identical engine operating conditions, were compared to the experimental results as well as a sensitivity study on wave-dynamics and heat transfer on the analytically predicted RMF. Similarly, theoretical and experimental NOx emissions were compared and production sensitivity on RMF levels explored.
Technical Paper

Macroscopic Model of the D86 Fuel Volatility Procedure

1998-10-19
982724
A model has been developed to predict quantitatively the results of the ASTM D86 fuel distillation procedure. The model uses material and energy balances to treat the procedure as a two stage unsteady-state distillation coupled with an air-filled continuous stirred-tank reactor (CSTR). Heat is removed from the second stage to simulate convection losses from the experimental apparatus. The model requires as inputs the fuel composition and the physical properties of all components (vapor phase heat capacity, vapor pressure, critical properties, density, molecular weight, solubility parameter). Correlations were used to approximate other needed properties. Liquid-phase activity coefficients were calculated with the UNIFAC model. Heat losses were modeled with a correlation from the literature. The model was validated by comparing predictions to experimental measurements on a seven-component model fuel. Agreement was extremely good across the entire range of volume fractions distilled.
Technical Paper

A Fuel Vapor Model (FVSMOD) for Evaporative Emissions System Design and Analysis

1998-10-19
982644
A fuel vapor system model (FVSMOD) has been developed to simulate vehicle evaporative emission control system behavior. The fuel system components incorporated into the model include the fuel tank and pump, filler cap, liquid supply and return lines, fuel rail, vent valves, vent line, carbon canister and purge line. The system is modeled as a vented system of liquid fuel and vapor in equilibrium, subject to a thermal environment characterized by underhood and underbody temperatures and heat transfer parameters assumed known or determined by calibration with experimental liquid temperature data. The vapor/liquid equilibrium is calculated by simple empirical equations which take into account the weathering of the fuel, while the canister is modeled as a 1-dimensional unsteady absorptive and diffusive bed. Both fuel and canister submodels have been described in previous publications. This paper presents the system equations along with validation against experimental data.
Technical Paper

Fuel Injector Flow Rate Analysis for the Duratec 35 EcoBoost Engine

2009-04-20
2009-01-1505
Flow rate characterization for the Duratec 35 EcoBoost engine was conducted at the Powertrain and Fuel Subsystems Laboratory of Ford Motor Company as a key element in the overall calibration for that program. For high-pressure gasoline fuel injection (used in the Direct Injection Spark Ignition [DISI] EcoBoost engine) in which fuel is directly injected in the cylinder, it is important to consider several variables that are not critical for low-pressure fuel injection. In this paper, the effects of fuel pressure, injector pulse width, battery voltage and injection frequency were assessed with respect to injector flow performance (dynamic flow, shot-to-shot variation in mass flow delivery, part-to-part variability in fuel flow, injector delay and split injection performance).
Technical Paper

Summary of Flow Metering Options for Injector Characterization

2009-04-20
2009-01-0664
A review was conducted of the various fuel injector flow rate measurement methods that are commercially available. The scope of the review was primarily focused on the gasoline applications of Port Fuel Injection (PFI) and Direct Injection Spark Ignition (DISI), but Diesel applications were reviewed as well. These flow meters were compared at the Powertrain & Fuel Subsystems Laboratory (PFSL) of Ford Motor Company. The purpose of this paper is to review the capabilities of each flow meter that is commercially available for use in injector characterization benches and engine test beds.
Technical Paper

Implications of the Energy Independence and Security Act of 2007 for the US Light-Duty Vehicle Fleet

2009-11-02
2009-01-2770
The Energy Independence and Security Act of 2007 established a new Renewable Fuel Standard (RFS2) requiring increased biofuel use (through 2022) and greater fuel economy (through 2030) for the US light-duty vehicle (LDV) fleet. Ethanol from corn and cellulose is expected to supply most of the biofuel and be used in blends with gasoline. A model was developed to assess the potential impact of these mandates on the US LDV fleet. Sensitivity to assumptions regarding future diesel prevalence, fuel economy, ethanol supply, ethanol blending options, availability of flexible-fuel vehicles (FFVs), and extent of E85 use was assessed. With no E85 use, we estimate that the national-average ethanol blend level would need to rise from E5 in 2007 to approximately E10 in 2012 and E24 in 2022. Nearly all (97%) US gasoline LDVs were not designed to operate with blends greater than E10. FFVs are designed to use ethanol blends up to E85 but comprise only 3% of the fleet.
Technical Paper

Ford's H2RV: An Industry First HEV Propelled with a H2 Fueled Engine - A Fuel Efficient and Clean Solution for Sustainable Mobility

2004-03-08
2004-01-0058
Ford's H2RV is a Hydrogen engine propelled Hybrid Electric concept Vehicle that was unveiled and driven at Ford's Centennial Show in June 2003. This vehicle is an industry first by an OEM that demonstrates the concept and the marriage of a HEV powertrain with a supercharged Hydrogen ICE that propels the vehicle. Just as Model T was the car of the 20th century, Model U is the vehicle for the 21st century. The powertrain utilizes compressed gaseous hydrogen as fuel, a supercharged 2.3L internal combustion engine, a 25 kW traction motor drive, the electric converterless transmission, regenerative braking, an advanced lithium ion battery, electric power assist steering, electronic throttle and Vehicle System Controller (VSC). The vehicle could deliver a projected fuel economy of 45 mpg and near zero emissions without compromise to performance.
Technical Paper

Safe Practices and Procedures for High Voltage and Hydrogen in Ford's H2RV

2004-03-08
2004-01-0059
In recent times, the development of alternate-fuel vehicles, including those fueled by hydrogen, has become relatively common. While there are potential safety related issues with any combustible fuel, these have been resolved over the last 100+ years. The comfort level with gasoline fuel has resulted from the widespread application of simple safety procedures followed at every stage of gasoline refinement and handling. It is important to have analogous procedures for handling hydrogen-fueled vehicles safely and with confidence. The characteristics of hydrogen, including: a) wide flammability range, b) very low ignition energy, c) odorless and difficult to detect, d) high diffusion rate, e) high buoyancy, f) invisible flame, etc., bolster the need for safe practices and procedures.
Technical Paper

NVH Challenges and Improvements Implemented in Ford H2RV: An HEV Propelled with a Supercharged Hydrogen Internal Combustion Engine

2004-03-08
2004-01-0061
Ford's H2RV (Hydrogen Hybrid Research Vehicle) uses a Hydrogen fueled Internal Combustion Engine. This engine has a higher compression ratio and a faster fuel-burning rate compared to a conventional gasoline engine. The conventional flywheel is replaced with an electric motor in the hybrid powertrain, which causes higher crankshaft torsionals and is a major NVH source. The engine has a centrifugal supercharger mounted on its front-end dress, which is a big source of NVH. Fans are used to cool the high voltage batteries and to provide ventilation of H2 in the case of a leakage. The body sheet metal has several holes for passive H2 ventilation, battery cooling, plumbing lines, and harness routing. Underhood hardware, due to the hybrid transmission and the H2 ICE, created major packaging challenges for the intake and FEAD NVH. The exhaust muffler volume was limited due to the installation of high voltage batteries and underbody H2 fuel tanks.
Technical Paper

Wall Film Dynamics Modeling for Impinging Sprays in Engines

2004-03-08
2004-01-0099
This paper proposes a film dynamics model for liquid film resulting from fuel spray impinging on a wall surface. It is based on a thin film assumption and uses numerical particles to represent the film to be compatible with the particle spray models developed previously. The Lagrangian method is adopted to govern the transport of the film particles. A new, statistical treatment was introduced of the momentum exchange between the impinging spray and the wall film to account for the directional distribution of the impinging momentum. This model together with the previously published models for outgoing droplets constitutes a complete description of the spray wall impingement dynamics. For model validation, films resulting from impinging sprays on a flat surface with different impingement angles were calculated and the results were compared with the corresponding experimental measurements.
Technical Paper

Architecture and Development of a Hydrogen Sensing and Mitigation System in H2RV - Ford's Concept HEV Propelled With a Hydrogen Engine

2004-03-08
2004-01-0359
Ford's Hydrogen Hybrid Research Vehicle (H2RV) is an industry first parallel hybrid vehicle utilizing a hydrogen internal combustion engine. The goal of this drivable concept vehicle is to marry Ford's extensive hybrid powertrain experience with its hydrogen internal combustion engine technology to produce a low emission, fuel-efficient vehicle. This vehicle is seen as a possible bridge from the petroleum fueled vehicles of today to the fuel cell vehicles envisioned for tomorrow. A multi-layered hydrogen management strategy was developed for the H2RV. All aspects of the vehicle including the design of the fuel and electrical systems, placement of high-voltage subsystems, and testing, service, and storage procedures were examined to ensure the safe operation of the vehicle. The results of these reviews led to the design of the hydrogen sensing and mitigation system for the H2RV vehicle.
Technical Paper

Modeling Transient Fuel Effects with Variable Cam Timing

2003-10-27
2003-01-3126
The physics of the mixture preparation process plays a critical role in transient engine control, a key enabler for satisfying increasingly stringent emissions requirements. This paper presents a fully transient, coupled model in Modelica for the liquid fuel behavior and thermodynamic engine cycle including thermal effects for a port fuel injection engine. Details of both the liquid fuel transport and cycle simulation models are provided. The integrated model is used to examine the effects of variable cam timing on the transient fuel behavior including comparisons between simulation results and experimental data under a variety of engine operating conditions.
Technical Paper

Engine Cycle Simulation of Ethanol and Gasoline Blends

2003-10-27
2003-01-3093
Ethanol is one of many alternative transportation fuels that can be burned in internal combustion engines in the same ways as gasoline and diesel. Compared to hydrogen and electric energy, ethanol is very similar to gasoline in many aspects and can be delivered to end-users by the same infrastructures. It can be produced from biomass and is considered renewable. It is expected that the improvement in fuels over the next 20 years will be by blending biomass-based fuels with fossil fuels using existing technologies in present-day automobiles with only minor modifications, even though the overall costs of using biomass-based fuels are still considerably higher than conventional fuels. Ethanol may represent a significant alternative fuel source, especially during the transition from fossil-based fuels to more exotic power sources. Mapping engines for flexible fuel vehicles (FFV), however, would be very costly and time consuming, even with the help of model-based engine mapping (MBM).
Technical Paper

Hydrogen Consumption Measurement for Fuel Cell Vehicles

2004-03-08
2004-01-1008
Fuel cell vehicle fuel consumption measurement is considerably different from internal combustion engine vehicle fuel consumption measurement. Conventional Carbon Balance Method and Flow Measurement methods for gas consumption within combustion engines are not suitable for fuel cell vehicles. The small quantities of fuel consumed and the characteristics of hydrogen itself impose a challenge for the hydrogen measurement. This paper addresses fuel consumption measurement for fuel cell vehicles using various methods such as mass flow measurement, pressure/temperature/volume method, weigh method as well as other methods. The advantages and disadvantages of these methods are discussed.
Technical Paper

Air Charge Estimation in Camless Engines

2001-03-05
2001-01-0581
An electromechanically driven valve train offers unprecedented flexibility to optimize engine operation for each speed load point individually. One of the main benefits is the increased fuel economy resulting from unthrottled operation. The absence of a restriction at the entrance of the intake manifold leads to wave propagation in the intake system and makes a direct measurement of air flow with a hot wire air meter unreliable. To deliver the right amount of fuel for a desired air-fuel ratio, we therefore need an open loop estimate of the air flow based on measureable or commanded signals or quantities. This paper investigates various expressions for air charge in camless engines based on quasi-static assumptions for heat transfer and pressure.
Technical Paper

Emissions Performance of Bi-fuel CNG and Bi-fuel LPG Passenger Cars Using Sequential Multi-point Injection Systems

2001-03-05
2001-01-1195
This paper describes a study into the emissions performance of a passenger car running on natural gas and liquified petroleum gas. The gasoline engine was modified to allow the introduction of the alternative fuels into the engine. The effect of fuel system hardware on emissions was investigated. Modifications were carried out to the gasoline EMS to allow control of the alternative fuel systems. A number of changes were made to the gasoline calibration to allow operation on the alternative fuels. Emissions tests were conducted on commercial grade natural gas and liquid petroleum gas. The results were compared with gasoline emission results of an equivalent vehicle.
Technical Paper

Modeling of HCCI Combustion and Emissions Using Detailed Chemistry

2001-03-05
2001-01-1029
To help guide the design of homogeneous charge compression ignition (HCCI) engines, single and multi-zone models of the concept are developed by coupling the first law of thermodynamics with detailed chemistry of hydrocarbon fuel oxidation and NOx formation. These models are used in parametric studies to determine the effect of heat loss, crevice volume, temperature stratification, fuel-air equivalence ratio, engine speed, and boosting on HCCI engine operation. In the single-zone model, the cylinder is assumed to be adiabatic and its contents homogeneous. Start of combustion and bottom dead center temperatures required for ignition to occur at top dead center are reported for methane, n-heptane, isooctane, and a mixture of 87% isooctane and 13% n-heptane by volume (simulated gasoline) for a variety of operating conditions.
X